skip to main content


Search for: All records

Creators/Authors contains: "Wu, Liguang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. Abstract

    How anthropogenic forcing could change tropical cyclones (TCs) is a keen societal concern owing to its significant socio-economic impacts. However, a global picture of the anthropogenic aerosol effect on TCs has not yet emerged. Here we show that anthropogenic aerosol emission can reduce northern hemisphere (NH) TCs but increase southern hemisphere (SH) TCs primarily through altering vertical wind shear and mid-tropospheric upward motion in the TC formation zones. These circulation changes are driven by anthropogenic aerosol-induced NH-cooler-than-SH and NH-increased versus SH-decreased meridional (equator to mid-latitudes) temperature gradients. The cooler NH produces a low-level southward cross-equatorial transport of moist static energy, weakening the NH ascent in the TC formation zones; meanwhile, the increased meridional temperature gradients strengthen vertical wind shear, reducing NH TC genesis. The opposite is true for the SH. The results may help to constrain the models’ uncertainty in the future TC projection. Reduction of anthropogenic aerosol emission may increase the NH TCs threat.

     
    more » « less
  3. null (Ed.)
    Abstract In the past 40 years, the global annual mean surface temperature has experienced a nonuniform warming, differing from the spatially uniform warming simulated by the forced responses of large multimodel ensembles to anthropogenic forcing. Rather, it exhibits significant asymmetry between the Arctic and Antarctic, with intermittent and spatially varying warming trends along the Northern Hemisphere (NH) midlatitudes and a slight cooling in the tropical eastern Pacific. In particular, this “wavy” pattern of temperature changes over the NH midlatitudes features strong cooling over Eurasia in boreal winter. Here, we show that these nonuniform features of surface temperature changes are likely tied together by tropical eastern Pacific sea surface temperatures (SSTs), via a global atmospheric teleconnection. Using six reanalyses, we find that this teleconnection can be consistently obtained as a leading circulation mode in the past century. This tropically driven teleconnection is associated with a Pacific SST pattern resembling the interdecadal Pacific oscillation (IPO), and hereafter referred to as the IPO-related bipolar teleconnection (IPO-BT). Further, two paleo-reanalysis reconstruction datasets show that the IPO-BT is a robust recurrent mode over the past 400 and 2000 years. The IPO-BT mode may thus serve as an important internal mode that regulates high-latitude climate variability on multidecadal time scales, favoring a warming (cooling) episode in the Arctic accompanied by cooling (warming) over Eurasia and the Southern Ocean (SO). Thus, the spatial nonuniformity of recent surface temperature trends may be partially explained by the enhanced appearance of the IPO-BT mode by a transition of the IPO toward a cooling phase in the eastern Pacific in the past decades. 
    more » « less